| One bond | | Two bonds | | One bond | | Two bonds | | |--|---|---|--|----------|---|--|---| | H ⁺ Na ⁺ K ⁺ Ag ⁺ Cu ⁺ NH ₄ ⁺ H ₃ O ⁺ | hydrogen
sodium
potassium
silver
copper(I)
ammonium
hydronium | Ba ²⁺ Ca ²⁺ Mg ²⁺ Cu ²⁺ Fe ²⁺ Zn ²⁺ Pb ²⁺ Hg ²⁺ | barium calcium magnesium copper(II) iron(II) zinc lead(II) mercury(II) | FCIO | fluoride chloride bromide iodide hydroxide nitrite nitrate Hydrogen sulphite hydrogen sulphate permanganate | O ²⁻ S ²⁻ SO ₃ ²⁻ SO ₄ ²⁻ CO ₃ ²⁻ Cr ₂ O ₇ ²⁻ | oxide sulphide sulphite sulphate carbonate dichromate | | thre | three bonds | | | |------------------|-------------|--|--| | Fe ³⁺ | iron(III) | | | | Al ³⁺ | aluminium | | | | Cr ³⁺ | chrome(III) | | | | | | | | three bonds N³⁻ nitride PO₄ phosphate ⁻ The prefixes mono- (one), di- (two), tri- (three), terra- (four), etc. are sometimes used to show the number of atoms in a compound, for example, Carbon monoxide CO and Carbon Dioxide CO₂. Examples of the determining of the formulae of an ionic compound: | Compound | lons present | Balancing of the ions (charges) | Formula | |---------------------|--|--|--| | Potassium chloride | K ⁺ and Cl ⁻ | 1 K ⁺ and 1 Cl ⁻ | KCI | | Magnesium hydroxide | Mg ²⁺ and OH | 1 Mg ²⁺ and 2 OH ⁻ | Mg(OH) ₂ | | Chrome(III)sulphate | Cr ³⁺ and SO ₄ ²⁻ | 2 Cr ³⁺ and 3 SO ₄ ²⁻ | Cr ₂ (SO ₄) ₃ | | Ammonium sulphate | NH ₄ ⁺ and SO ₄ ²⁻ | 2 NH ₄ ⁺ and 1 SO ₄ ²⁻ | (NH ₄) ₂ SO ₄ | Chemical- and common names for well known inorganic compounds: | Formula | Chemical name | Common name | | | |---------------------------------|---------------------------|--|--|--| | H ₂ O | hydrogen oxide | Water | | | | NH ₃ | hydrogen nitride | Ammonia | | | | HCI | hydrogen chloride | Hydrochloric acid - used in swimming pools and to clean cement bricks. | | | | HNO ₃ | hydrogen nitrate | Nitric acid | | | | H ₂ SO ₄ | hydrogen sulphate | Sulphuric acid- battery acid, extraction of metals from ore. | | | | H ₂ NO ₂ | hydrogen nitrite | Nitrous acid | | | | H ₂ CO ₃ | hydrogen carbonate | Carbonic acid | | | | H ₃ PO ₄ | hydrogen phosphate | Phosphuric acid | | | | NaHCO ₃ | sodium hydrogen carbonate | Bicarbonate of soda | | | | Na ₂ CO ₃ | sodium carbonate | Washing soda | | | | NH ₄ NO ₃ | ammonium nitrate | Vlugsout - treatment of patients that faint. | | | | NaOH | sodium hydroxide | Caustic soda | | | | NaNO ₃ | sodium nitrate | Chili saltpetre | | | | кон | potassium hydroxide | Caustic potash | | | | KNO ₃ | potassium nitrate | Saltpetre | | | | Ca(OH) ₂ | calcium hydroxide | Slaked lime | | | | CaSO ₄ | calcium sulphate | Plaster of Paris (gypsum) | | | | CaO | calcium oxide | Quicklime | | | | CaO ₃ | calcium carbonate | Marble or chalk | | | | CO ₂ | carbon dioxide | Carbon dioxide | | | | MgSO ₄ | magnesium sulphate | Epsom salts | | | | CuSO ₄ | copper sulphate | Blue vitriol - controls the growth of algae | | | ## Chemical and common names of organic compounds: | Formula | Chemical name | Common name | | |-------------------------------|---------------|----------------------------------|--| | CH ₄ | Methane | Main constituent of natural gas. | | | C ₂ H ₆ | Ethane | | | | C ₃ H ₈ | Propane | | |